Cookies   I display ads to cover the expenses. See the privacy policy for more information. You can keep or reject the ads.

Video thumbnail
Today I want to explain how we know that the way Einstein thought about gravity cannot
be correct.
Einstein’s idea was that gravity is not a force, but it is really an effect caused
by the curvature of space and time.
Matter curves space-time in its vicinity, and this curvature in return affects how matter
moves.
This means that, according to Einstein, space and time are responsive.
They deform in the presence of matter and not only matter, but really all types of energies,
including pressure and momentum flux and so on.
Einstein called his theory “General Relativity” because it’s a generalization of special
relativity.
Both are based on “observer independence”, that is the idea that the laws of nature should
not depend on the motion of an observer.
The difference between General Relativity and Special Relativity is that in Special
Relativity space-time is flat, like a sheet of paper, while in General Relativity it can
be curved, like the often named rubber sheet.
General Relativity is an extremely well-confirmed theory.
It predicts that light rays bend around massive objects, like the sun, which we have observed.
The same effect also gives rise to gravitational lensing, which we have also observed.
General Relativity further predicts that the universe should expand, which it does.
It predicts that time runs more slowly in gravitational potentials, which is correct.
General Relativity predicts black holes, and it predicts just how the black hole shadow
looks, which is what we have observed.
It also predicts gravitational waves, which we have observed.
And the list goes on.
So, there is no doubt that General Relativity works extremely well.
But we already know that it cannot ultimately be the correct theory for space and time.
It is an approximation that works in many circumstances, but fails in others.
We know this because General Relativity does not fit together with another extremely well
confirmed theory, that is quantum mechanics.
It’s one of these problems that’s easy to explain but extremely difficult to solve.
Here is what goes wrong if you want to combine gravity and quantum mechanics.
We know experimentally that particles have some strange quantum properties.
They obey the uncertainty principle and they can do things like being in two places at
once.
Concretely, think about an electron going through a double slit.
Quantum mechanics tells us that the particle goes through both slits.
Now, electrons have a mass and masses generate a gravitational pull by bending space-time.
This brings up the question, to which place does the gravitational pull go if the electron
travels through both slits at the same time.
You would expect the gravitational pull to also go to two places at the same time.
But this cannot be the case in general relativity, because general relativity is not a quantum
theory.
To solve this problem, we have to understand the quantum properties of gravity.
We need what physicists call a theory of quantum gravity.
And since Einstein taught us that gravity is really about the curvature of space and
time, what we need is a theory for the quantum properties of space and time.
There are two other reasons how we know that General Relativity can’t be quite right.
Besides the double-slit problem, there is the issue with singularities in General Relativity.
Singularities are places where both the curvature and the energy-density of matter become infinitely
large; at least that’s what General Relativity predicts.
This happens for example inside of black holes and at the beginning of the universe.
In any other theory that we have, singularities are a sign that the theory breaks down and
has to be replaced by a more fundamental theory.
And we think the same has to be the case in General Relativity, where the more fundamental
theory to replace it is quantum gravity.
The third reason we think gravity must be quantized is the trouble with information
loss in black holes.
If we combine quantum theory with general relativity but without quantizing gravity,
then we find that black holes slowly shrink by emitting radiation.
This was first derived by Stephen Hawking in the 1970s and so this black hole radiation
is also called Hawking radiation.
Now, it seems that black holes can entirely vanish by emitting this radiation.
Problem is, the radiation itself is entirely random and does not carry any information.
So when a black hole is entirely gone and all you have left is the radiation, you do
not know what formed the black hole.
Such a process is fundamentally irreversible and therefore incompatible with quantum theory.
It just does not fit together.
A lot of physicists think that to solve this problem we need a theory of quantum gravity.
So this is how we know that General Relativity must be replaced by a theory of quantum gravity.
This problem has been known since the 1930s.
Since then, there have been many attempts to solve the problem.
I will tell you about this some other time, so don’t forget to subscribe.